from sklearn.decomposition import NMF
from sklearn.datasets import make_blobs
centers = [[5, 10, 5], [10, 4, 10], [6, 8, 8]]
X, _ = make_blobs(centers=centers)
n_components = 2
model = NMF(n_components=n_components)
model.fit(X)
W = model.transform(X)
H = model.components_
print(W)
print(H)
[[1.19766994 0.13358679]
[0.66746879 0.99088947]
[0.6042335 1.01905346]
[0.86681641 0.82490118]
[1.48259625 0.08189441]
[0.88876181 0.70164654]
[0.69470766 0.79088102]
[0.91115847 0.96651117]
[0.80758121 0.77306129]
[0.69905185 0.97413211]
[0.85577822 0.57333738]
[0.54641323 0.95454392]
[0.73592249 1.09260989]
[0.84008852 0.60879354]
[0.88219332 0.77463386]
[0.57804313 0.9914767 ]
[1.02935213 0.65261928]
[1.4412191 0.10039533]
[1.49620828 0.17994642]
[0.55370405 1.09346932]
[0.78615864 0.83027296]
[0.73595104 1.13939672]
[0.509426 1.01769641]
[1.42934294 0.06149644]
[0.65137888 0.98170796]
[1.36629018 0.14135849]
[0.6038439 1.02659722]
[1.19968199 0.08639518]
[0.66073495 1.09830897]
[0.88855344 0.89465474]
[0.75247428 0.93819426]
[0.73169429 0.84280388]
[0.6598703 0.96468009]
[1.32375515 0. ]
[0.61609098 0.91478167]
[0.91447927 0.77497417]
[0.88332728 0.64917029]
[0.92159929 0.52058038]
[1.29171335 0.12319609]
[0.56227751 1.09897048]
[1.39814087 0.18540118]
[0.90242298 0.65935956]
[0.52724319 1.12649579]
[0.82819233 1.04809157]
[0.60686853 1.02292252]
[0.67583459 0.7702366 ]
[1.44746301 0.06413168]
[1.36425004 0.20016573]
[0.89278407 0.75298045]
[0.76914718 0.88557797]
[0.88875379 0.64780441]
[0.78422971 0.95356309]
[1.35364677 0.05120759]
[1.3318964 0.16184274]
[1.40546062 0.16930998]
[0.85360164 0.69411615]
[1.33266278 0.16265007]
[1.04182543 0.85077411]
[1.34349061 0.15812565]
[0.81406299 0.78620922]
[0.8916262 0.81945665]
[0.95880846 0.73921369]
[0.88251054 0.69367952]
[1.48188345 0.09134134]
[1.04513583 0.84862865]
[0.44286613 1.2816661 ]
[0.52136123 0.98925529]
[1.3262648 0.0018028 ]
[1.33656138 0.06243606]
[1.1959514 0.06763811]
[1.3083053 0.14412448]
[0.56065484 0.99295874]
[1.07917815 0.45525339]
[0.83121797 0.82285167]
[1.41634831 0.09679492]
[0.59182344 1.09634675]
[0.63458217 0.90249339]
[1.42602168 0.26449149]
[0.97138147 0.73092181]
[1.34621791 0.0605946 ]
[1.37614465 0.12212213]
[1.01944936 0.67597182]
[0.75410776 1.04493802]
[1.330216 0.36247901]
[1.127936 0.23453544]
[0.8022906 0.90076573]
[1.33349605 0.12334863]
[0.95921947 0.46886348]
[0.92050375 0.65881885]
[0.65141056 1.05754018]
[0.49134421 1.0099088 ]
[1.20535891 0.26343988]
[1.18918774 0.25513411]
[1.26670139 0.23837451]
[0.5048205 1.10582409]
[0.46833637 1.02242139]
[1.16792676 0.08370171]
[0.5342194 1.06576008]
[0.55246285 1.06322998]
[1.01809602 0.8103749 ]]
[[7.34113 2.09204933 7.53492881]
[0. 8.52310408 0.73945398]]
C:\Users\bl4an\anaconda3\lib\site-packages\sklearn\decomposition\_nmf.py:289: FutureWarning: The 'init' value, when 'init=None' and n_components is less than n_samples and n_features, will be changed from 'nndsvd' to 'nndsvda' in 1.1 (renaming of 0.26).
warnings.warn(
댓글남기기